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Abstract

The Journal of Astronomy and Space Sciences (JASS) has published research papers on a range of topics
since its initial publication in 1984, giving space science researchers a platform. In this paper, we reviewed
recent publications (2019-2023) that deal with the space environment. In the space environment field, we
reviewed 37 papers published in JASS during this time, covering research topics such as the sun,
magnetosphere, ionosphere, atmosphere, and space radiation. \We hope that researchers in the field will
make use of this in the future as it will allow us to share the most recent trends in the field of space

environment research that is currently underway.

Keywords : space environment, sun, magnetosphere, ionosphere, atmosphere, space

radiation

1. INTRODUCTION

Since the Journal of Astronomy and Space Sciences (JASS) was first published in 1984,
papers on various topics have been published as the field of space science research has
steadily expanded into new areas. Jeon & Kim [1] classified all papers published from
1984, when JASS was founded, to 2018 and analyzed papers by field (see Table 1). The
space-environment, space-exploration, space-application, space-technology, space-
astronomy, and other categories comprised the authors' classification of all the papers
published in JASS during this time frame. Within this category, the space environment
was further classified as follows: sun (or solar), magnetosphere, ionosphere, atmosphere,
and space radiation. Following the period examined in Jeon & Kim [1], there were 109
papers published in JASS between March 2019 and September 2023, of which 37 papers
dealt with the space environment. We analyzes these space environment papers recently
published in JASS in order to present current research trends in the field.

The method for calculating the ionization degree of hydrogen in chromosphere [2], the
statistical analysis of the solar activity cycle [3], the coronal mass ejections (CMEs) tracking
model [4], and the relationship between the solar activity cycle and Earth's climate [5,6] are
some of the topics of papers researching solar-related fields that will be introduced in this
paper. Papers covering a wider range of magnetosphere-related subjects are available.
Examining the subjects covered, these include the accuracy analysis of magnetic field

models [7], observations of magnetospheric ultralow frequency (ULF) waves [8,9], modeling
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Table 1. Subjects and details of research for classification of articles published in JASS during

the period from 1984 to 2018 [1]

Subjects Contents

1 Space envinronment Sun (or solar), magnetosphere, ionosphere, space-ray

, Solar system (except earth and sun),
2 Space exploration , ) ' .
lunar exploration, space survey (including asteroids and comets)

o Space geodesy, payload, application
3 Space application ) _ _ . :
(including microgravity and remote sensing)

4 Space technology Satellite operation, satellites (including space shuttles and rockets)

5 Space astronomy Observation instruments, general astronomy, historical astronomy

6 Other Education, meteorological (or climate)

JASS, Journal of Astronomy and Space Sciences.

of magnetosonicw aves (MSW) [10,11], magnetohydrodynamic (MHD) simulation of
interstellar solar wind [12], analysis of plasma sheet transition [13], observation and
statistical analysis of field-aligned currents (FAC) [14,15], research trends of high-energy
particles flowing into the magnetosphere [16,17], and examination of aurora observed
at the Jang Bogo Station (JBS) [18].

Studies related to the ionosphere are divided into papers that study mid- to low-
latitude and high-latitude regions. Topics related to the mid-to-low latitude ionosphere
include effects of solar flux on equatorial electrojets (EEJ) and counter electrojets (CEJ)
[19], review of ionospheric models applied to the mid-to-low latitude region [20],
equatorial plasma bubbles (EPBs) observation and research trends [21,22], sporadic E or
E region irregularities over the Korean peninsula [23,24], Tonospheric mid-latitude
trough (IMT) [25], hemispheric asymmetry of equatorial ionization anomaly (EIA) [26],
and ionospheric changes caused by earthquakes or solar eclipses [27,28] have been
studied. Papers related to the polar ionosphere include polar cap and aurora
observations from European Incoherent Scatter (EISCAT) radar [29] and JBS Vertical
Incidence Pulsed lonospheric Radar (VIPIR) observation results [30].

Studies pertaining to the atmosphere include thermospheric wind observation and
simulation during geomagnetic storm event [31], polar mesospheric summer echos
(PMSEs) observation analysis [32], mesosphere and lower thermosphere region wind
observed over Korean peninsula [33] and observations of the stratospheric and
mesospheric fluctuations during stratospheric sudden warmings (SSW) [34]. Aviation
radiation observation and modeling [35-37] and analysis of cosmic ray observation data
using a neutron monitor [38] are the two main topics covered in published papers linked

to space radiation.
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2.METHODS

In this paper, we collected and reviewed papers published in JASS from March 2019
(Vol. 37, No. 1) to September 2023 (Vol. 40, No. 3). During this period, a total of 109
papers were published in JASS. We introduced 37 research papers corresponding to
subgroups of the space environment (including sun, magnetosphere, ionosphere,
atmosphere, and space radiation fields). Almost all of these papers are published in JASS
as review-paper or research-paper. Papers subject to review were mainly scientific
papers, and even technical papers, introducing observation equipment developed
domestically included papers that performed scientific analysis on observation results.

The open access JASS journal web server (http://janss.kr) allows you to view these works.

3. CLASSIFICATION BY RESEARCH TOPIC

3.1 Sun (Solar)

From March 2019 to September 2023, a total of 5 research papers on the sun, included
in the Space Environment category, were published at JASS. A variety of topics have been
studied, including the sun's chromosphere, CMEs prediction models, statistical studies
of solar activity, and changes in Earth's climate due to solar activity.

The entire plasma above the minimum temperature region where hydrogen remains
partially ionized, mainly made up of free electrons, protons, and hydrogen atoms, is
referred to as the solar chromosphere. Because it is observable from the ground and can
be used to determine the hydrogen temperature, the He line that neutral hydrogen in
the chromosphere emits is useful. With the assumption of a stationary field of
photoionizing radiation, Chae [2] proposed a straightforward method for calculating the
degree of ionization of hydrogen using an equation corresponding to a non-LTE
extension of the Saha equation. Consequently, in a chromospheric environment, a
plasma feature with a temperature below 17,000K, can retain over 10% of its hydrogen
in a non-ionized state, while temperatures above 23,000K result, in the majority of
hydrogen being in an ionized state. Physically speaking, temperatures below 20,000K,
are acceptable, given the results of the observations. It is highly likely that the
temperature predicted by the He line is not real at temperatures above 25,000K because
there is no neutral hydrogen present and the plasma is likely in a state of complete
ionization equilibrium [2].

Chang [3] performed a statistical analysis of the linear relationship between the
number of monthly sunspots and the percentage of monthly active days (AD) during the
solar minimum period. The length of the solar cycle and the rising phase were also
analyzed, in addition to the number of sunspots that were observed each month at solar

maximum. Relationships with groups were also compared using sunspot numbers that
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were newly calibrated and provided after 2015. Daily sunspot counts from the Solar
Influences Data Analysis Center (SIDC), collected at various observatories worldwide
during solar cycles 9 through 23 between 1843 and 2008, were the source of the data.
This makes it difficult to derive the conclusion that there is a relationship between the
maximum sunspot number for a given solar cycle and the slope of a linear function
relating the monthly sunspot number and AD. Conversely, the length of the solar cycle
was found to be, for the most part, only weakly correlated. There is debate regarding the
effect of even and odd solar cycles on the slope of the monthly group number and AD
linear relationship [3].

Solar explosions known as CMEs are what set off geomagnetic storms. Geomagnetic
storms can result from the dynamic compression of the Earth's magnetic field by high-
velocity, high-density plasma or from the recombination of the southward magnetic field
component of the interplanetary CME (ICME) and the northward magnetic field
component of the magnetosphere. The speed and direction of the CME can change as
it travels through interplanetary space due to interactions with other CME or the solar
wind. To understand changes due to the interaction of CMEs and background solar wind,
Park et al. [4] developed an algorithm to track the propagation of CMEs. This algorithm
uses the interplanetary scintillation (IPS) g-values recorded at a single station to predict
the speed of the CMEs. With respect to a real-time CME event that happened on October
2, 2000, the developed algorithm predicted the propagation of three daily storms; the
errors in arrival time and speed were 18 minutes and 20 km/s, respectively. This
demonstrated that the g-values of IPS observations from the Institute for Space-Earth
Environmental Research (ISEF) can be used to track the propagation of CMEs.
Furthermore, statistical validation was carried out on 50 CME-ICME pair events, yielding
an average error of 310 km/s for velocity and 11.14 h for arrival time [4].

Kim & Chang [5] looked into the relationships between solar variability and
teleconnection indices, which affect atmospheric circulation and the spatial distribution
of the global pressure system, in order to investigate the potential role of the Sun in
understanding natural climate change. Using teleconnection indices [Southern
Oscillation Index (SOI), Arctic Oscillation (AO), Antarctic Oscillation (AAO), and Pacific-
North American (PNA)], they have computed the normalized cross-correlations of the
total sunspot area, total sunspot number, and the solar north-south asymmetry.
Consequently, (1) El Nifio episodes most likely happen three years after a solar maximum
because the SOI index has an anti-correlated relationship with both solar activity and
the solar north-south asymmetry, with a lag of approximately -3 years. (2) There exists
a weak or negligible correlation between solar activity and AO, AAO, and PNA index. (3)
The correlations resulting from the teleconnection indices themselves are just as good as
the correlations between the teleconnection and solar activity indices [5].

Chang [6] investigated relationships between the overall sunspot area and cloud

properties. The total sunspot area, solar north-south asymmetry, SOI with the cloud
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coverage at various altitude ranges, total column water vapor in the cloud, global surface
air temperature, cloud top temperature, cloud top pressure, and cloud optical depth
were all normalized cross-correlations that were determined. The following is the
primary findings: (1) The extent of upper-level cloud peaks is maximum when the solar
north-south asymmetry is nearly at its minimum. (2) When solar activity is decreasing,
low-level clouds are at their largest. (3) Cloud coverage and the SOI index do not

significantly correlate [6].

3.2 Magnetosphere

The papers published related to the Magnetosphere accounted for 12 of 37 papers in
the entire field of Space Environment. Because the magnetosphere has so many diverse
topics and the number of domestic researchers is limited, the topics of all published
papers were different.

For the study of magnetospheric characteristics, it is an essential element to create a
model that can well explain the magnetic field phenomenon of the magnetosphere and
is similar to actual values. The Tsyganenko magnetic field model (T04, TO1, T96) was
examined by Song & Min [7] to determine how well it predicted changes in the
geomagnetic field brought on by magnetic storms. Using Kyoto University's Dst index
data from 1990 to 2016, they modeled 12 events. It was confirmed with magnetic field
observation data during the event period from the Geostationary Operational
Environmental Satellites (GOES), and NASA's OMNI data provided the variables required
to compute the Tsyganenko magnetic field model. The simultaneous and spatial
comparison was conducted between observed data and model values of the magnetic
field. The TO4 model, with an approximate error of 13%, would be helpful even at the
location where the error is largest during geomagnetic storms. TO1 performed best
during quiet periods, with an average error of 8%. In addition, by identifying points with
significant spatial errors during a storm, the increase in magnetotail error was
quantitatively ascertained [7].

The distribution of relativistic ()~400 keV) and ultrarelativistic O)~2 MeV) electrons in
the outer Van Allen radiation belt is highly variable. Additionally, it is recognized that a
major component propelling this process are plasma waves, specifically ULF waves. The
interactions between ULF wave and particle were noted by Lee et al. [8] during the
geomagnetic storm's recovery phase on July 16, 2000. The global ground-based
magnetometer arrays were used to collect magnetic field data. Additionally, the magnetic
field and particle flux data used in this study were obtained from GOES 8 and provided
by the Synchronous Orbit Particle Analyzer aboard the Los Alamos geostationary
satellites. The findings demonstrate the intricate relationship between ULF waves and
frequency, local time, particle energy, and particle species. Consequently, they put forth

two theories to account for the flux modulation that was seen: (1) Energy-dependent
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particle density gradients advecting (protons and electrons show the similar amplitude
and lack of phase change with energy); (2) Energetic electronic drift resonance (distinct
flux oscillations varying in amplitude and phase over various energy channels). Given the
obvious connection between Pc5 waves and particle flux oscillations, Pc5 ULF waves
could be crucial for electron acceleration in radiation belts [8].

In the Earth's magnetosphere, Pc1 pulsations are believed to be caused by anisotropic

energetic particles (7., » T.aw)s Which produce electromagnetic ion cyclotron (EMIC)

b
waves. They are mainly generated by ring current particles with energies ranging from
tens to hundreds of keV in the equatorial inner magnetosphere. Using data from the
Bohyeonsan Optical Astonomy Observatory magnetic impedance (MI) (L = 1.3), observed
from November 2009 to August 2018, Kim et al. [9] examined the statistical features of
Pcl pulsation. Temporal occurrence rate variations (seasonal, diurnal, and annual) of
Pcl pulsations were studied, along with their relationship to wave properties (duration,
maximum frequency, bandwidth), and geomagnetic activity indices (Kp and Dst). The
following are the outcomes: (1) From late winter to early spring, PC1 waves were more
common, particularly in August and after midnight (01-03 magnetic local time (MLT)).
(2) Events usually lasted 2.5 minutes, with a very narrow bandwidth (within 0.1 Hz) and a
maximum frequency of about 0.9 Hz. (3) During the storm, 77% of the Pc1 waves were
recorded, and 90% were seen in the storm's early recovery phase [9].

MSW, or equatorial noise, are interesting because of their potential role in electron
scattering in the radiation belt. Kim [10] developed an empirical model for the global
distribution of these MSW. Both inside and outside the plasmasphere, MSW are usually
distributed within a few degrees of magnetic latitude. The ambient plasma environment
on regions experiencing MSW are the main causes of the difference between the pitch
angle and the dominant energy that MSW can scatter. The Tsyganenko TS04D model
and data from Electrical and Magnetic Field Instrument and Integrated Sciences mounted
on a Van Allen probe were employed. According to statistics and modeling results, the
intense region propagates inward toward Z* { 4 and expands toward the wider MLT as
Kp increases. As Kp rises in every region, the £./£, ratio falls in distinct ways in the
regions above and below Z* = 4. These results suggest that the effective scattering power
of MSW depends on the geomagnetic activity and particle energy. All MLTs, 2 < I* {6,
|A] <20°, and Kp < 6 are valid for the model [10].

One of the most commonly seen plasma waves in the inner magnetosphere (radial
distance { ~10 &) are near-equator MSW, which have the biggest amplitudes in the few
to ~100 Hz frequency range. In order to calculate the wave growth rate, Min & Liu [11]
firstly determine the dipole magnetic field lines and the ring-shaped proton velocity
distribution on the magnetic equator; secondly, they compute the linear theory
dispersion relation along the field lines. The saturation amplitude was examined using a
complete particle-in-cell (PIC) simulation. It is assumed here that the background and

plasma magnetic fields at various points along the magnetic field lines are uniform and
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treated as local. While MSW grows fastest at high latitudes (20-25), statistical
observations show that the saturation amplitude actually maximizes within #10° latitude.
In contrast to the observed data, the rate of decrease of the saturation amplitude was not
as sharp and the average wave normal angle of the excited MSW in the simulation
showed little variation with latitude. It is expected that this is due to other factors that
were not considered in the current analysis, such as background magnetic field, plasma
inhomogeneity, and propagation effects [11].

Understanding the nature and features of the process by which the magnetosphere
receives energy, momentum, and plasma from the solar wind at the magnetosphere
boundary is one of the main challenges in magnetospheric physics. Fundamental
processes like pressure pulse effects, viscous-like interactions like Kelvin-Helmholtz (K-
H) instability, and magnetic reconnection occur at the magnetopause boundary. Park et
al. [12] performed an accurate global MHD simulation to investigate the effects of a
prolonged solar wind and a weak southward interplanetary magnetic field (IMF) on the
magnetic configuration and vortex structure. This leads to the following outcomes: (1)
vortices are generated close to the inner site of the magnetopause following dayside
reconnection; (2) the vortex propagates anti-sunward at a velocity of roughly 20-60 km/s
in the dayside magnetopause region and roughly 50-150 km/s in the duskside region of
the magnetopause; (3) the vortex rotates clockwise on the dawnside and
counterclockwise on the duskside; (4) the magnetic field and plasma properties fluctuate
quasi-periodically with a period of 810 min across the vortex; (5) the polar region
clearly displays double twin ), viscous cell, induced viscous cell, and the tail lobe
convection cell and (vi) the peak value of the cross-polar cap potential varies ranging
from 17 to 20 kV over a period of 8-10 min during the tail reconnection [12].

Geomagnetic activity is largely influenced by the magnetic tail region close to Earth,
which lies between approximately 10 and 25 &;. In the quiet-time central plasma sheet
(CPS), the average ion density and thermal energy are approximately 0.2-0.4 cm™ and
2.6-6 keV, respectively. As magnetic activity increases, the temperature rises and the
density slightly decreases. The case study of the transition boundary between the hot,
rarefied plasma and the cold, dense plasma in the CPS near the midnight meridian was
examined by Kim & Lee [13]. Observational data obtained from the Plasma Electron and
Current Experiment, fluxgate magnetometer (FGM), and Cluster Ion Spectrometry
aboard Cluster spacecraft were utilized. Furthermore, 1-minute average magnetic field
and plasma data observed from OMNI/ACE were used in the analysis. Consequently, the
properties of the border that divides the magnetotail into areas with distinct plasmas
along the dawn-dusk direction were showcased. The plasma's characteristics suggest
that plasmas from various sources may make up the near-Earth magnetotail, and it is
anticipated that various dynamic processes will take place, potentially influencing the
evolution of geomagnetic activity. Furthermore, it is concluded that field-aligned
currents generated by the boundary layer can contribute to magnetosphere-ionosphere

coupling [13].
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Depending on the direction of the IMF B,, the inner boundary of the auroral region
expands (contracts) during geomagnetic storm conditions, moving toward the equator
(poleward). Awuor et al. [14] defined a new metric called FAC extent in order to study
latitudinal variations in storm-time mesoscale FAC. The Challenging Minisatellite
Payload (CHAMP) satellite's FGM and OMNI data (Dst, IMF B,, solar wind dynamic
pressure data) from NASA/Goddard Space Flight Center (GSFC) were examined. When
compared to the dawn and night sides, the analysis reveals that the equatorward shift is
more pronounced on the northern dusk side at ~58’, consistent with the minimum SymH,
and ~59° on the dayside. In the northern hemisphere dusk-dawn MLT sector, the
latitudinal shift in the FAC range is more correlated with the IMF B, than in the southern
hemisphere. It is also more sensitive to dynamic pressures in the dusk-side northern
hemisphere and dawn-side southern hemisphere than in the dusk-dawn zone and dawn
zone of the southern hemisphere. The FAC range demonstrated a strong correlation with
the dynamic pressure in the daytime (nighttime) southern hemisphere (northern
hemisphere), suggesting potential electrodynamic parallels in the MLT sectors of the
opposing hemisphere [14].

It is well known that the FAC surrounding the auroral region, which travels along
magnetic field lines into and out of the ionosphere, is crucial to the movement of
particles and energy during the solar wind-magnetosphere-ionosphere coupling process.
Shin et al. [15] examined the current density seen as the Cluster constellation moved
through the nightside auroral region at roughly 45 R, from the Earth's center in order
to investigate the composition and generating mechanism of FAC. Data from February
22, 2002, when two FAC phenomena were observed in both the southern and northern
hemispheres within the same current sheet for all four spacecraft, was used because the
separation between the spacecraft was less than 200 km. The bipolar FAC linked to the
Earthward current during the event had magnitudes of 70.04 nA/m? at the valley and
46.70 nA/m* at the peak, extending 516 km from valley to peak in the Southern
Hemisphere. With respect to earthward currents, the mapped FAC in the northern
hemisphere has a magnitude of 805 km and a magnitude of 56.76 nA/m? [15].

Space Radiation Detector (SRD) is a part of the instruments for the study of
Stable/Storm-time Space (ISSS) installed on the Next-Generation Small Satellite-1
(NEXTSat-1) that was launched in 2018. SRD consists of the High-Energy Particle
Detector (HEPD), which detects electrons in the energy range of 0.35-2 MeV, and the
Medium-Energy Particle Detector (MEPD) -A and -B, which detects electrons, ions, and
neutral particles in the energy range of 20400 keV. Yoo et al. [16] documented a number
of SRD-related events. MEPD-A recorded an event where substorm injection led to an
enhancement of the particle flux in the energy range of several tens of keV. They
detected spatial distributions of electron with energies ranging from tens to hundreds of
keV (MEPD) and up to few MeV (HEPD) in the slot region and outer radiation belt. They

observed electron distributions over a broad energy range. It is found that the inner edge
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of the outer radiation belt corresponds to the plasma transient position of L and is
relatively more consistent with sub-relativistic energies than with relativistic energies [16].

It is well known that, at energies of a few 10s keV, an anisotropic distribution of
energetic ions causes 7, 7}, thereby excitation of EMIC waves. This anisotropy can be
caused by both dynamic pressure enhancement of the solar wind and substorm injection.
Pitch angle scattering by EMIC waves is well known to cause relativistic electrons and
energetic ions to precipitate in the atmosphere within the inner magnetosphere.
Research on relativistic electron scattering and precipitation resulting from interaction
with EMIC waves in the inner magnetosphere was reviewed by Lee [17]. This review
addresses the advances in simulation over the last ~15 years and looks at the theory of
many different issues, such as quasilinear resonant diffusion, nonlinear interactions,
nonresonant interactions, the effect of a finite normal angle on pitch angle scattering,
the tone emission lift, and the effects of methods of scattering pitch angle electrons near
the equator [17].

Auroras, a polar upper atmosphere phenomenon also called polar light, have been
observed for centuries before space research began, but the physical process has only
recently begun to be understood when observation capabilities from the ground and
satellites have improved due to connectivity with the ionosphere and magnetosphere.
Since 2018, the JBS in Antarctica has been using the All-sky camera (v-ASC) continuously
to observe aurora concurrently with the ionosphere, thermosphere, and magnetosphere
(ITM). Jee et al. [18] introduced analysis procedures and observations to calculate aurora
occurrence by distinguishing aurora from v-ASC image data, and provided preliminary
findings regarding the aurora's temporal and spatial distribution. Based on observations,
the aurora appears primarily on the northern horizon during the evening sector,
stretching from the northwest to the zenith and filling nearly the whole sky over JBS at
08 MLT. In the morning sector, the aurora recedes to the northeast. At 12 MLT, auroras
are distributed horizontally across the northern sky disk, showing aurora occurrences in

the cusp area. This means that JBS's location is ideal for investigating aurora [18].

3.3 lonosphere

The papers published related to the Ionosphere accounted for 12 of the 37 papers in
the entire field of space environment. Studies mainly focus on mid- to low-latitude
ionospheric phenomena.

A narrow band of strong eastward currents that flow at altitudes of 105 to 110 km above
sea level within 3 degrees of latitude on either side of the equator is known as the EE]J.
The westward anti-CEJ creates the H-field depression at equatorial stations when the EEJ
system's flow reverses on magnetically quiet days. The F10.7 and the impact of sunspot
number (R) were studied by Cherkos [19]. Ground-based magnetic data collected in 8

sections (Peru, Brazil, West and East Africa, India, Southeast Asia, Philippines, and the
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Pacific) and F10.7 and R data observed from satellites during that period were used. The
results show that changes in monthly average EEJ intensity are consistent with changes
in solar flux and cycle of sunspot number, with strong peaks around the vernal equinox
at high F10.7 and R, and strong diurnal EEJ over Peru, Southeast Asia, and the Philippines.
Strong Morning-CEJ (MCEJ) observations were made over Brazil, East Africa, and Peru.
During high solar cycle periods, an anti-correlation was noted between Afternoon-CEJ]
(ACEJ) events and F10.7 [19].

The ionized region of the upper atmosphere, known as the ionosphere, is dispersed
between 60 and 1,000 km. Numerous physical processes, including chemical reactions,
diffusion, wave disturbances, plasma instability, neutral winds, and transport related to
electric and magnetic fields, all have an impact on the ionospheric plasma. One of the
main elements of the near-Earth space environment is the ionosphere, which is closely
linked to other parts of the Earth's atmosphere like the thermosphere, magnetosphere,
lower atmosphere, and plasma sphere. lonospheric predictions using observations and
models are essential due to their practical impact on human society. Numerical
modeling of the ionosphere is necessary not only to specify and predict space weather,
but also to comprehend the physical processes that take place within the ionosphere.
There are various approaches to developing ionospheric models: data assimilation
modeling, theoretical modeling based on physics, and empirical modeling based on data.
These three categories of ionospheric models were briefly introduced by Jee [20], who
also provided an explanation of the physics-based ionospheric model using the
fundamental equations governing the mid-latitude ionosphere. Additionally, boundary
conditions requiring a numerical solution of the equations were discussed [20].

Aeronautics relies heavily on far-infrared wavelength observation because it provides
detailed data on the temperature, composition, and particle density of the terrestrial
ionosphere-thermosphere. Nevertheless, there are no known instances of climatological
analysis of EPBs using Far-UltraViolet (FUV) limb imaging devices. Park et al. [21]
investigated the small-scale measurement of oxygen ion density observed in limb images
of FUV on board the Ionospheric Connection Explorer ICON) with the aim of
confirming the feasibility of using EPBs in climatological analysis. Two-dimensional limb
images of oxygen airglow are available in the 135.6 nm and 157 nm channels via
ICON/FUV. Consequently, the ambient density shows, in agreement with earlier
research, (1) the well-known zonal wavenumber-4 structures in the EIA and (2) off-
equatorial enhancement above the Caribbean. As a complement to other observations
from FUV disk imagers and in-situ plasma probes, ICON/FUV data are expected to be
useful in EPBs studies [21].

It is well known that low-density plasma rising from the bottom of the F region causes
the EPBs, an irregularity in electron density in the equatorial ionosphere at night. The
generation mechanism and three-dimensional structure of EPBs were discussed in the

review and references by Kil [39]. EPBs observed from the ground and space over the
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past 100 years shows systematic seasonal and longitudinal changes and is also affected
by the solar cycle. Many theories have been proposed to account for this systematic
behavior of EPBs, but because it is challenging to simultaneously observe the
development of causal perturbations globally, EPBs climatology remains incompletely
understood. Kil [22] reviewed the climatology of EPBs occurrence confirmed through
observations and the driving mechanisms currently understood [22].

Sporadic E (E) is a thin layer with a thickness of roughly 1-2 km, where the electron
density in the ionospheric E region at mid-latitudes is 2-3 times higher than the ambient
area. It is understood to form as a result of long-term presence of metal ions from
meteors that are subsequently brought together by horizontal neutral winds. Jo et al. [23]
reported the E, layer observed at the digisonde in Icheon (37.14'N, 127.54°F) and Jeju
(33.4'N, 126.30°F) during the period from 2011 to 2018. At both observation sites, the
incidence of E, and the magnitude of criticla frequency (fo£) peak in summer, but virtual
height of the Es layer (4F) shows semi-annual changes similar to the peak height of
mesospheric meteors measured by the Sejong Science Station meteor radar (MR). Local
time changes in A, show semi-diurnal modulations during the equinoxes and summer
months, but the changes are not evident in winter. The HWM14, IGRF12, and
NRLMSISE-00 models were utilized to compute vertical ion velocities and verify their
association with the semidiurnal fluctuations of A4, and the tidal horizontal wind [23].

Although the field-aligned irregularities (FAIs) of the ionospheric E-region have been
extensively studied in the equatorial, low-latitude and auroral regions using radar and in
situ measurements, the afternoon E-region FAI at mid-latitudes has not been previously
reported. Yang et al. [24] reported the afternoon observation results of FAI in the mid-
latitude E region using VHF radar. Data from a VHF coherent scattering radar (40.8 MHz
frequency) that has been continuously operated in Daejeon, South Korea (36.18N,
127.14°F) since December 29, 2009 was used. This means that: (1) afternoon E-region
FAI occurrence in mid-latitudes peaks in summer and peaks in winter; (2) afternoon E-
region FAI echo SNR in mid-latitudes is 35 dB, with an occurrence altitude of 100-135
km; and (3) the 4 E. observed in Icheon in the afternoon are in the height range of 105~
110 km, which is approximately 5-10 km larger than the he FAI bottom side observed at
the same time. The SNR of FAI is thought to be improved by large values of (££-£F),
indicating that patch-like E structures are in charge of excitation irregularities [24].

The large-scale ionospheric electron density depletion phenomenon known as the
IMT happens at night in mid-latitude regions and is thought to be caused by intricate
plasma processes in conjunction with the magnetosphere. In order to statistically
examine the properties of the IMT, Hong et al. [25] examined upper-level sounding data
from the Alouette and ISIS satellites in the 1960s and 1970s. The IMT depth rate and IMT
features are stronger and more pronounced in the winter hemisphere under solar
minimum conditions, even though the IMT position remains relatively constant

throughout the season and solar activity. Furthermore, in the IMT region, the transition
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height—where the densities of oxygen ions and hydrogen/helium ions are equal—was
high at night and low during the day. St. Petersburg, situated both within and beyond the
IMT region. They discovered that the electronic temperature in the IMT region is higher
on winter nights, based on measurements from the Incoherent Scatter Radar (ISR) at
Santin and Millstone Hill. Bipolar diffusion can propel the ionospheric plasma quickly
into the magnetosphere, causing IMT depletion, when electron temperature rises [25].
The most prominent anomaly in the low-latitude ionospheric F region is the EIA,
which is characterized by two enhanced plasma density peaks centered at a magnetic
latitude of +£15° off the equator. During solar minimum on the winter solstice, there is
an opposite hemispheric asymmetry in the intensity of the EIA in the morning and
afternoon. The interaction of the interhemispheric winds and the fountain effect, which
produces EIA, explains this phenomenon. Plasma density data from CHAMP, GPS Total
Electron Centent (TEC) data collected between 2001 and 2008, and plasma data from the
Constellation Observing System for Meteorology, Ionosphere, and Climate satellites from
2007 to 2008 were reported, according to Kwak et al. [26]. The low-latitude ionosphere's
hemispheric asymmetries were examined using density data. The findings demonstrated
a stronger EIA in the winter hemisphere both in the morning and afternoon during the
solar maximum, and a shift in the occurrence of stronger EIA from the winter
hemisphere to the summer hemisphere around 12-14 LT during the solar minimum [26].
In addition to factors such as solar and geomagnetic activity, recent studies have
suggested that seismic activity can cause ionospheric changes. Using vertical TEC data
from the National Oceanic and Atmospheric Administration, Park & Park [27] examined
ionospheric changes brought on by seismic activity that took place in the United States
between January 2013 and December 2015. The TEC fluctuations over 40 days, including
the time of the earthquake, were distinguished for four regions where earthquakes of
magnitude M = 5.5 occurred, and the TEC fluctuations during earthquakes of magnitude
5.0 < M < 5.5 were examined. The findings showed that upper anomalies happened
between two and eighteen days prior to the earthquake and between one and eighteen
days following it. Of the twelve earthquakes with a magnitude of 5.0 < M <5.5, upper
anomalies were found in six (50%) of the cases prior to the earthquake and in five (42%)
of the cases following it. Six (75%) and five (62%) of the eight earthquakes with a
magnitude of M = 5.5 had upper anomalies prior to and following the earthquake. The
TEC anomalies mentioned earlier are thought to be caused by seismic activity because
the F10.7, Dst, and Kp indices show low to moderate solar and geomagnetic activity [27].
Over the past 50 years, numerous studies have examined the effects of solar eclipses
on the ionosphere, making them an ideal experimental opportunity to study the effects
of solar radiation on the ITM system. On August 21, 2017, between 17:20 and 18:47 UT
(local daylight time), there was a total solar eclipse that crossed the United States, creating
a narrow, black shadow that was roughly 160 km wide. The Swarm A and C satellites

traveled 445 km during this period, entering the upper ionosphere at noon in the United
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States and traveling through the lunar penumbra. Swarm mission data over the United
States was used by Hussien et al. [28] to study the effects of solar eclipses on electron
temperature, slanted TEC (STEC), and electron density. It can be inferred from
observations that (1) a notable decrease in electron density and STEC coincided with the
eclipse, possibly as a result of extreme ultraviolet reduction favoring dissociative
recombination over photoionization, (2) The electron temperature in 41°-57° latitude
decreased by up to 150K compared to the reference date (December 23) [28].

The northern hemisphere aurora region, which includes Kiruna, Sweden, and
Sodankyld, Finland, is the subject of ionosphere studies by the international scientific
association known as EISCAT, which is composed of multiple nations. This multi-site
ISR system is situated in Longyearbyen, Svalbard, and Tromsg, Norway. Since 2015, the
EISCAT Science Association has included the Korea Polar Research Institute (KOPRI) and
the Korea Astronomy and Space Science Institute (KASI) as affiliated organizations. Jee
et al. [29] analyzed observed data from December 16 - 21, 2016 and January 3 - 9, 2018,
to investigate the ionospheric characteristics of the extreme/peak regions during the
winter day. For this purpose, ESR observation results (electron density profile, ion drift,
electron and ion temperature) were analyzed together with the High Altitude
Interferometer WIND Experiment (HIWIND) provided by the National Center for
Atmospheric Research (NCAR) and the High Altitude Observatory (HAO). Additionally,
using long-term polar ionospheric data recorded by EISCAT radar at three sites, an
investigation was carried out on the features of ion upflow generation associated with
ion/electron heating in the polar ionosphere. In addition, they looked into how the polar
ionospheric density profile and the mid-latitude ionosphere differ in terms of
climatology [29].

Through solar wind-magnetosphere-ionosphere interaction, the polar ionosphere—
where geomagnetic field lines are open—plays a significant role in the transfer of energy
from the Sun to the Earth's atmosphere. Understanding the energy exchange between
the magnetosphere and polar ionosphere requires constant observation, but Antarctica
is much more inaccessible than the Arctic, making observations there extremely rare.
A VIPIR was installed at the JBS by the KOPRI in 2015 in order to continuously monitor
the ionospheric conditions in the aurora oval and polar cap region. The fundamentals
of JBS-VIPIR were presented by Ham et al. [30], along with an explanation of how it
can be used for Antarctic upper atmosphere research. Understanding the polar
ionosphere is anticipated to be aided by the high-resolution ionospheric data (ion drift,
bottom ionospheric gradient, and electron density) supplied by JBS-VIPIR in
conjunction with JBS's concurrent observations of the aurora, neutral atmosphere, and

magnetosphere [30].
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3.4 Atmosphere

There are a total of 4 papers related to Earth atmosphere research, including polar
atmosphere research using polar observation devices.

The magnetosphere affects atmospheric winds, which are a crucial parameter for
comprehending the ionosphere, particularly during geomagnetic storms. A coupled
magnetosphere-ionosphere model is needed to understand magnetospheric effects on
thermospheric winds. Fabry Perot interferometry (FPI) wind observations over the mid-
to-high latitudes were used by Wu et al. [31] to compare with the Multiscale Atmosphere
Geospace Environment (MAGE) modeling results for the geomagnetic storm that
occurred on November 34, 2021. The findings verified that the decline in thermosphere
poleward winds at high latitudes at 22 UT on November 3 was linked to an IMF
reorientation towards the north. It was also confirmed that at 10 UT on November 4, the
IMF shifted to the south and poleward winds strengthened. Equatorial winds
strengthened in Boulder, Colorado around midnight as the IMF turned south. Auroral
events that occur simultaneously can be linked to the IMF by means of a negative
component, as the wind results computed using the MAGE model clearly demonstrate
(311.

Radar (frequency between 3-300 MHz) can detect PMSEs which occur at altitudes of
80-90 km (upper mesosphere and ionospheric D region). It is composed of charged ice
particles of 1050 nm in size and is known to be produced at temperatures below 150 K.
Lee et al. [32] statistically analyzed wind, wave, and turbulence information provided by
the ESRAD, a 52 MHz VHF mesosphere-stratosphere-troposphere radar, is situated in
Esrange, Sweden, at 63.7°N and 21°E to estimate PMSE. In conclusion, the enhancement
of PMSE was closely related to regional substorms and was especially noticeable during
the 00-04 MLT period. Furthermore, the local electromagnetic field or global convective
field caused by electron precipitation may have accelerated the high zonal velocities of
PMSE scatterers during the substorm in the early magnetic dawn sector (0003 MLT) [32].

The mesosphere and lower thermosphere regions are controlled by atmospheric
waves of various periods. Specifically, shorter-period gravitational waves begin in the
lower atmosphere, rise, and are either dissipated or broken in the upper atmosphere,
altering the upper atmosphere's thermal structure and background flow. Kam et al. [33]
used KASI MR observations from 2017 to 2020 to study the hourly, daily, and seasonal
circulation characteristics of the east-west and south-west winds in the mesosphere and
lower thermosphere region over the Korean Peninsula. The overall characteristics of the
east-west and north-south winds demonstrated clear daily and seasonal variations,
according to the observational data. Semi-diurnal (12-hour period) and/or diurnal (24-
hour period) tides of 80100 km were observed for both winds. When it comes to annual
variation, the strongest component for both winds is annual variation, while only zonal

winds exhibit semi-annual and annual variation [33].
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An example of the dynamic coupling between the lower and upper atmospheres
through atmospheric waves generated in the lower atmosphere and propagating upward
to affect the upper atmosphere is the phenomenon known as SSW. Kim et al. [34]
examined the vertical structure of temperature and ozone in the stratosphere and
mesosphere during SSW by analyzing temperature and ozone observations taken by the
Microwave Limb Sounder / Aura satellite between 2005 and 2016. The WACCM4 model
was used to calculate the polar daily average temperature, with the results compared to
that figure. Overall mesospheric temperature appeared to be uncorrelated with
stratospheric temperature during the pre-phase period. The correlation was significant
in the lower thermosphere and upper mesosphere during the post-phase. Ozone density
was observed to vary significantly during the main- and post-phase of three SSW events.
Air flowing in the polar stratosphere from mid-latitude regions during this time can be

the reason for the increase in ozone density [34].

3.5 Space Radiation

A total of 4 studies related to space radiation were published, including papers mainly
related to aviation radiation and observation results from neutron monitor.

Radiation generated at the altitude of commercial airplanes is ionizing radiation from
primary protons of galactic cosmic rays and solar energetic particles. Radiation Safety
Management around Living Life Act (Radiation Safety Act) stipulates annual radiation
dose limits for flight attendants in Korea and the need for more accurate prediction and
measurement of aviation radiation is emerging. Korea Radiation Exposure Assessment
Model (KREAM), radiation prediction model is being developed to ensure radiation safety
for flight crew and passengers. Hwang et al. [35] verified the KREAM model by comparing
it with Liulin observations. To measure radiation exposure in aircraft, a total of 25
experiments were conducted with the Liulin-6K instrument on board commercial
aircraft from March 11 to May 26 of 2020. KREAM's results were generally in very good
agreement with Liulin's observations. While Civil Aviation Research Institute (CAR])-6M
typically produced results that were lower than the observations, Nowcast of
Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) typically produced results
that were higher than the Liulin observations. Compared to the Liulin observation,
KREAM showed an error of 10.95%, NAIRAS showed an error of 43.38%, and CARI-6M
showed an error of 22.03%. They also found that radiation exposure can suddenly
increase with altitude, especially in polar regions [35].

Since 2013, cosmic radiation exposure dose of flight crew member in Korea has been
governed by the Radiation Safety Act. Members of the domestic flight crew are except
from this law because they are exposed to comparatively lower route doses than
members of the international flight crew. However, because of the excessively frequent

flights and comparatively long total flight time, Ahn et al. [36] confirmed that the annual

https://www.jstna.org | 315



Research Trends on Space Environments in Korea

316

https://doi.org/10.52912/jsta.3.4.301

cumulative dose of domestic flight crew is not negligible. Therefore, using the space
radiation estimation model of the CARI-6M, NAIRAS, the annual cumulative dose of
domestic flight crew was statistically analyzed in order to suggest the need for radiation
exposure management of domestic flight crew. On the basis of comparison with field
measurements from the KREAM and Liulin-6K LET spectrometer for NAIRAS, it was
determined that the average radiation exposure dose for domestic flight crew was
between 0.5 and 0.8 mSv [30].

Since the outbreak of the war in Ukraine, domestic airlines have been operating routes
bypassing Russian airspace since March 15, 2022, despite longer flight times. As flight
times have increased, the cosmic ray exposure dose of flight crew and passengers is
expected to have also increased. Ahn et al. [37] compared the radiation exposure dose
according to flight time and latitude difference before and after operating on a detour
route. Latitude had little effect on the regular and detour routes for the eastern US when
they operated in high latitudes above 50 degrees north latitude. Radiation exposure for
the European routes was greatly impacted by the latitude difference between the normal
route operating in high latitude and the bypass route operating in mid-latitude. The
average reduction in radiation exposure resulting from the US East route and the European
route due to the bypassing to Russia was 7.97 #Sv and 18.73 uSv, respectively [37].

Muons and neutrons are common secondary particles that are produced when protons,
the primary cosmic ray particle, interact with the nuclei of atmospheric gas compounds.
These particles can be found underground or on the surface. It is well known that the
meteorological effects of temperature cause seasonal variations in muons, and that
diurnal and solar variations or transitory phenomena can cause modulations in neutron
intensity over a range of time periods. By averaging daily data from the Oulu Neutron
Monitor, which was in operation from January 1974 to December 2019, to the grand
average and annual average, Jeong & Oh [38] reported seasonal variations in cosmic ray
particles. Because of where the Earth is in its orbit, more particles enter in the early
spring and early winter, and the meteorological effect of the thermal expansion causes
fewer particles to enter in the summer. Additionally, because of the low cutoff, low-
energy protons produce observed neutrons whereas high-energy protons produce

muons [38].

4. SUMMARY AND DISCUSSION

Since its first publication in 1984, the JASS has published research papers on a variety
of topics and has provided a research venue for researchers in the field of space science.
In particular, among these areas of space science, there is a growing interest in aspects
of the space environment that have an impact on real life, such as radio communications
and space weather. In order to understand the latest trends in the space environment

research field, this paper introduces 37 papers related to the space environment among
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those recently published by JASS from 2019 to 2023. The space environment around the
Earth is spatially linked starting from the sun to the magnetosphere, ionosphere, and
atmosphere, and various fields are being studied, including cosmic radiation originating
from the sun or outer space.

During this period, the solar chromosphere, CMEs modeling, and the connection
between the solar cycle and Earth's climate were studied in the field related with Sun.
Regarding the magnetosphere, various wave observations and modeling that occur
within the magnetosphere have been studied, and magnetosphere modeling according
to solar activity has been performed. The phenomena seen in the EIA region (asymmetry,
EPB, IMT), Sporadic E, and ionospheric alterations brought on by solar eclipses or
earthquakes were examined in relation to the ionosphere in the mid- and low-latitude
regions. Regarding the polar ionosphere, analysis of observation results from polar
observation instruments was studied. The study focused on atmospheric aspects such as
atmospheric modeling, PMSEs analysis and correlation between atmospheric layers
through waves. Regarding space radiation, research on aviation radiation was mainly
conducted. Through this, we hope to disseminate a range of published research topics

and current trends in each field and make them useful for future field researchers.
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Abstract

Satellite attitude—control actuators are equipped with a reaction wheel for three—axis attitude control. The
reaction wheel rotates a motor inside the actuator to generate torque in the vector direction. When using
the reaction wheel, there are restrictions on the torque values generated as the motor rotates. The torque
value of the reaction wheels mounted on small satellites is approximately 10 mNm, and high values are
not used. Therefore, three—axis attitude control of a small satellite is possible using a reaction wheel, but
this method is not suitable for missions that require rapid attitude control at a specific time. As a technology
to overcome the small torque value of the reaction wheel, the control moment gyro (CMG) is currently in
wide use as a rapid attitude—control actuator in space satellites. The CMG has an internal gimbal mounted
at a right angle to the rotation motor and generates a large torque value. In general, when the gimbal
operates, a torque value approximately 100 times greater is generated, making it suitable for rapid posture
maneuvering. Currently, we are developing a technology for mounting a controlled moment gyro on a small

satellite, and here we share the development status of an 800 mNm CMG.

Keywords : control moment gyro, highly agile control, attitude control, reaction wheel
assembly

1. INTRODUCTION

In order to perform its unique mission, a satellite must be oriented in the required
direction in its mission orbit. In other words, when an earth observation camera is
mounted, the camera must be oriented toward the earth in order to perform the
observation mission. In addition, when a payload carrying out a space science mission
is loaded, the attitude of the observation device must be controlled so that the sensor is
aimed toward the direction of space. At this time, there can be various types of actuators
required for attitude control of a satellite. Currently, the reaction wheel is the most widely
used driving device for high-precision attitude control of satellites. The reaction wheel
is most commonly used as an attitude-control drive device for ultra-small cube satellites,
small-scale satellites, and mid- to large-scale satellites, as considerable amounts of

heritage and reliability in space must be guaranteed. However, the torque generated by
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reaction wheels is extremely limited. In other words, only relatively low torque is
generated, making this device not feasible for use when it is necessary to control the
direction of a satellite quickly. In particular, it has the disadvantage of not being able to
generate the fast rotation speed of 1 to 10 deg/s required by earth observation satellites
or military satellites that require high mobility [1]. In general, this level of required fast
maneuvering is a performance metric that cannot be met by a momentum exchange
actuator (momentum wheel assembly, MWA) or a reaction wheel (reaction wheel
assembly, RWA) of the types currently mainly used in satellites [1]. A control moment
gyro (CMG) is typically used as an actuator to meet these performance requirements [2-
4]. The development of technology for the CMG, which generates the large amounts of
torque required for high mobility and attitude control, is ongoing. Among actuators that
use the momentum exchange principle, the CMG can produce high torque and has
therefore been commonly used in two types of satellites that require such high torque
levels in the United States since the early 1970s. One has been used in satellites with a
very large moment of inertia, such as a space station, and the other finds use in the rapid
maneuvering of earth observation military satellites, which require agile maneuverability
[5]. Missions requiring agile maneuverability are steadily increasing and include military
satellites, observation satellites, and satellite-based scientific missions. Therefore, the
development of a CMG suitable for micro-satellites began in 2022 through cooperation
between domestic industries, academia and research institutes. In the present study, we
introduce the development status of the hardware, software, and mounting methods

used in the development of ultra-small CMGs that can be mounted on domestic satellites.

2. CMG SPECIFICATIONS

Satellites can be classified into various types according to factors such as their weight
and mission. In this study, development standards were established while taking into
account the physical characteristics of the ever-increasing number of microsatellites. In
relation to this, satellites have various moments of inertia (Mol) depending on their
mission-based configuration. Table 1 below describes the pros and cons of rapid
maneuvering when using the RWA or CMG strategies depending on the development
shape of the satellite structure.

Mols of various sizes are calculated according to the various shapes of microsatellites,
and CMG development specifications suitable for microsatellites capable of rapid
maneuvering on each axis have been defined and developed, as shown in Table 2.

Table 2 shows the possible satellite configurations, and the Mol for each configuration
has different values. Assuming CMGs are mounted on a small satellite, Mol depending
on the satellite configuration is distributed from 1.5 kem?® to 60 kgm?® Therefore, this
CMG determined the CMG's specifications that can maneuver at 10 deg per second

considering the configuration of the small satellite as shown in Table 1.
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Table 1. Mol pros and cons considering various spacecraft configurations

Spacecraft configurations

Description

ight Direction

Satellite Body Solar Array Panel

Type#1 satellite configuration

Considering the optimal placement of the
CMG, the satellite shape has the
advantage of being able to observe the
observation target (+Y axis) quickly from
the satellite's flight direction (+X axis) to the
left and right.

- RWA: A shape that makes it difficult to
maneuver quickly at 10 deg/s on each
axis

- CMG: A shape capable of rapid

maneuvering at 10 deg/s on each axis

Solar Array Panel

<+—Flight Direction

v

+7

Type#2 satellite configuration

Considering the optimal placement of the
CMG, the shape of the satellite makes it
difficult quickly to observe the observation
target (+Y axis) from the satellite's flight
direction (+X axis) to the left and right.

- RWA: A shape that makes it difficult to
maneuver quickly at 10 deg/s on each
axis

- CMG: A shape that makes it difficult to
maneuver quickly at 10 deg/s on each

axis

Type#3 satellite configuration

Considering the optimal placement of the
CMG, the satellite shape has the
advantage of being able to observe the
observation target quickly (+Y axis) from
the satellite's flight direction (+X axis) to the
left and right.
- RWA: A shape that makes it difficult to
maneuver quickly at 10 deg/s on each axis
- CMG: A shape capable of rapid maneuvering

at 10 deg/s on each axis

Mol, moments of inertia; RWA, reaction wheel assembly; CMG, control moment gyro.
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Table 2. 800 mNm CMG specifications

ltems Specifications
Momentum 800 mNms
Torque 800 mNm
Dimensions 158 mm
Mass 3.5kg
Communications RS422
Voltage +28 V

CMG, control moment gyro.

3. CMG DESIGN

3.1 CMG Electrical Configuration

A CMG consists of a spin motor that rotates at a high speed and a gimbal motor that

generates high torque by controlling the angular speed of the spin motor as it rotates at

a high speed. Because it must be used as a highly agile attitude-control driving device

for ultra-small satellites, all circuit parts that can be commonly applied are unified in

consideration of the volume and power consumption (Fig. 1).

3.2 CMG Mechanical Configuration

Spin motors rotate at high speeds and thus there should be no interference with

surrounding structures or electronic components. Therefore, the shaft is configured as

shown in Fig. 2 below for stable support when the spin motor rotates at a high speed. In

addition, in order to generate high torque from a spin motor rotating at a high speed,

%‘m?:(l I\Fa;lsllg Spin Motor Driving
Gen(;’rato-r ) Circuits
DC/DC 1 Spin Motor
Power Supply
Gimbal Motor .
Driving Pulse G!n]bdl Motor — L
Generator Driving Circuits
l—l Gimbal Motor
v
| CMG Analog Status
Com N Analog to Digital
Interface [ Micro—Controller Converter

Fig. 1. Internal configuration diagram of the 800 mNm CMG electronics unit, where the power

supply unit and communication unit are integrated to minimize the number of applied parts.

CMG, control moment gyro.
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CMG Spin
——> Motor Shaft

——>Ring
———>Control Electronics

Power and Communications

%
- Connector

CMG Gimbal Motor
Fig. 2. Internal configuration diagram of the 800 mNm CMG structure: the structure is
composed of a spin motor driving part and a gimbal motor driving part, and each motor

transmits and receives data through a slip ring. CMG, control moment gyro.

the structural shape is designed to enable control of the gimbal motor at a constant
angular speed. Data and power between the two motors are supplied through a slip ring.
The rotational angular speed and status information of each motor are obtained through

the slip ring and a communication transceiver at the bottom.

3.3 CMG Clustering

The torque direction of each CMG must be controlled to generate a high torque in a
specific direction so that the target can be quickly maneuvered using the rotational
angular velocity of the spin motor rotating at a high speed. In general, driving force is
obtained by using a RWA and CMG in a cluster format to generate the torque necessary
for posture maneuvering. For missions that do not require agile maneuverability, the
RWA is configured in a certain format to ensure the necessary attitude-control driving
force. Satellite three-axis attitude control using a RWA involves a pyramid shape. Each
RWA remains in an uncontrolled state when the rotation speed is saturated above a
certain speed. Fortunately, for the RWA, the saturated rotational angular velocity can
normally be controlled using a magnetorquer. For the CMG, there are certain gimbal
angle sets where certain directions of torque cannot be generated. Maneuvering
performance is degraded in such gimbal angle sets; target torque could not be generated
as intended, falling into uncontrollable states. Such uncontrollable case at the specific
gimbal angle state is called a singularity, and an algorithm must be implemented to avoid
such an area when the CMG operates. Fig. 3 below describes the pros and cons of each
cluster configuration. The pyramid-type arrangement has an advantage such that the
available momentum envelope is not biased in a specific direction. Therefore, the
momentum capacity can be distributed evenly, and this arrangement is ideal for three-

axis posture control [6]. However, because there is a complex area in which singularities
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€), (©)

Fig. 3. CMG clustering assembly: (a) Type1 of CMG clustering assembly: the pyramid-type
arrangement of CMG (b) Type2 of CMG clustering assembly: the rooftop-type arrangement
of CMG. CMG, control moment gyro.

exist within the momentum envelope, there is a high possibility that maneuvering will
be disrupted at that point [7]. In addition, there are cases in which singularity avoidance
inevitably involves a change in the angular momentum, which has the disadvantage of
making the mounting and use of this arrangement difficult on an actual satellite [6].

The rooftop-type arrangement is a CMG arrangement that has been widely used
recently. Unlike the pyramid-type arrangement, the area in which the singularity exists
inside the momentum envelope is simple, offering the advantage of relatively easy
singularity-avoidance maneuvers [8].

For a rooftop CMG array, if six or more wheels are used, attitude-control maneuvers
can be performed without restrictions due to singularity problems. Additionally, even
when only four wheels are used, the singularity problem can easily be solved through
feasible methods such as limiting the operation area of the CMG gimbal or applying null
motion [9]. However, because the momentum envelope is elongated in a specific
direction, there is a disadvantage in that the momentum capacity is not evenly
distributed. However, this feature is not always necessarily a disadvantage because the
momentum capacity can be increased on a specific axis when high-speed maneuvering

is required [6].

4. CMG MANUFACTURING AND TEST RESULTS

4.1 CMG Prototype Fabrication

The main hardware components make up the CMG are magnets, coils, and bearings.
The CMG, a driving device applied to a satellite, is a component that rotates continuously
after launch and continues to operate until the end of the mission. Therefore, it must be
manufactured with parts that are highly reliable at the manufacturing stage. In addition

to the electromagnet component, a spin motor and a gimbal motor are used as driving

https://www.jstna.org | 327



Highly Agile Actuator Development Status of an 800 mNm CMG

328

https://doi.org/10.52912/jsta.3.4.322

parts, with these motors controlled by the satellite using a field effect transistor (FET).
Among CMG components, slip ring parts are used to ensure the electrical connection
between the spin motor and the gimbal motor.

The design of the bottom of the CMG included bolt holes for assembly onto the satellite.
The CMG internal spin motor rotates at a high speed and is manufactured with
simulations of the bolt quantity and diameter to minimize the effects of vibration. Fig. 4
shows the internal shape of the 800 mNm CMG and the shape in which the cover is
manufactured. The overall size considering the CMG cover, at 108 mm % 108 mm X

158 mm, was selected with the goal of mounting a micro-satellite.

4.2 CMG Cluster Assembly

The CMG cluster consists of a total of four clusters. CMG #1 and CMG #2 were
manufactured to be arranged on the same axis, and CMG #3 and CMG #4 were also
arranged on the same axis. Additionally, an electronic control device for data distribution
and for the power supply was placed in the central part of the CMG cluster.

In the CMG cluster configuration, the spin motor rotates in the direction of the red
arrow. The CMG gimbal motor rotates in the direction of the black arrow in Fig. 5, and
the torque of an individual CMG is shown in blue in Fig. 5. When these torque values are
added in the vector direction, torque and momentum suitable for high mobility are

generated.

4.3 CMG Cluster Experiment and Test

The pros and cons of the CMG combination were described in previous research

results. Therefore, an operability test according to the CMG cluster production was

158mm

108mm

108mm

(a) (b)

Fig. 4. Fabrication of the 800 mNm CMG hardware. (a) CMG external configuration, (b) CMG

manufacturing configuration. CMG, control moment gyro.
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Fig. 5. 800 mNm CMG cluster hardware fabrication configuration. CMG, control moment gyro.

conducted, as shown in Fig. 6. The main components tested here consisted of a CMG
cluster, a power supply, and control software. The CMG cluster and control computer
were configured to be connected via a USB communication link.

The basic operation and torque generation of the CMG were tested in the environment

shown in Fig. 6, and the results shown in Table 3 below were derived.

5. CONCLUSION

Satellite attitude-control technology using reaction wheels is a very old technology,
continuing to find use, however, as it is a highly reliable technology. However, the torque
value is low and insufficient for satellites that require quick control of the attitude and
that must observe a target during flight. The reaction wheel has a rotational angular

speed of about 1 deg/s per second, making quick rotations virtually impossible. Typical

CMG EGSESW  CMG Cluster Interface CMG Cluster Power Supply

Fig. 6. Cluster hardware performance test configuration using a combination of four 800

mNm CMGs. CMG, control moment gyro.
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Table 3. 800 mNm CMG test results

Requirements

CMG# Gimbal Spin motor speed Gimbal motor speed
Spin speed
speed
1 0-5,000 rpm  0-2 arcsec/s

2 0-5,000 rom  0-2 arcsec/s \\ / e il
3 0-5,000 rpm  0-2 arcsec/s \ /

4 0-5,000 rpm 02 arcsec/s

CMG, control moment gyro.

missions are complex and rapid attitude control of the satellite is necessary to observe
various targets in a limited time. Hence, a CMG must be used to meet the rotational
angular velocity per second requirement of at least 10 deg/s. Here, a CMG study was
conducted to generate torque suitable for microsatellites. Although various types of
satellite shapes have been designed, a CMG development standard was established
considering the Mol value according to the shape of an earth observation satellite. The
torque generated by the developed CMG is approximately 800 mNm, and tests were
conducted of its functional operating capabilities by forming a cluster. It was confirmed
through testing that each CMG generates torque of 800 mNm. In order to be mounted
on a satellite, a CMG cluster configuration was used, and it was confirmed through
production that each CMG meets the performance of a CMG suitable for a micro-

satellite considering the corresponding vector value.
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A Study of Static Random Access Memory Single Event Effect
(SRAM SEE) Test using 100 MeV Proton Accelerator
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This study aims to develop technology for testing and verifying the space radiation environment of miniature
space components using the facilities of the domestic 100 MeV proton accelerator and the Space
Component Test Facility at the Space Testing Center. As advancements in space development progress,
high—performance satellites increasingly rely on densely integrated circuits, particularly in core components
components like memory. The application of semiconductor components in essential devices such as solar
panels, optical sensors, and opto—electronics is also on the rise. To apply these technologies in space, it is
imperative to undergo space environment testing, with the most critical aspect being the evaluation and
testing of space components in high—energy radiation environments. Therefore, the Space Testing Center
at the Korea testing laboratory has developed a radiation testing device for memory components and
conducted radiation impact assessment tests using it. The investigation was carried out using 100 MeV
protons at a low flux level achievable at the Gyeongju Proton Accelerator. Through these tests, single event

upsets observed in memory semiconductor components were confirmed.
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Fig. 1. SRAM (S6R1616W1M) structure. SRAM, static random access memory.
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Fig. 5. SEU mapping results of SRAM: (a) “0” write/read and (b) “1” write/read. SEU, single

event upset; SRAM, static random access memory.
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Abstract

The paradox of cubesat development process in the New Space paradigm is related to a complicated and
time—consuming system engineering procedure. Due to their low cost and quick production time, cubesats
are a highly accessible space asset in the startup—driven “New Space” industry. In reality, however, the
development process experienced by the student teams selected through the national cubesat
competition is quite different from what we expect. This is because cubesats are designed and
implemented using a lengthy and tedious procedure defined by the systems engineering perspective. The
purpose of this work is to explain to developers who are unfamiliar with systems engineering the role and

function of systems engineering in each step of the cubesat development process.
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Keywords : cubesat, new space, system engineering
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Fig. 1. Development phases and key activities from a system engineering perspective.
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Table 1. Requirements verification method for systems engineering technical processes

Verification
Category Description Reference data
method
Inspection
Inspection of
- Drawings, design review
documents such
- Bill of materials
as design
- Technical
drawings or
Description/specification/publication
verification based
- Material and process
on similarity data
Inspection - Standards or maintenance manual

Qualification
Verification using
— Declaration of design and performance
various
- Software qualification

— Technical standard order (TSO)

certification

results at the
- Inspection on equipment
component level
— Test reports on equipment
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Table 1. (Continued)

Verification o
Category Description Reference data
method
- Calculations(loads, stress,
Verification of load,
performance, etc.)
stress,
- Theoretical checks
performance,
_ _ - Functional analysis
A Analysis electrical load, etc.
. - Electrical loads analysis
through theoretical
- Weight and center of gravity
or numerical
- Reliability/maintainability/safety
analysis
analysis
Verification of
operational
performance
through various
non—-measurement - Maintainability demonstration
tests performed - Demonstration on mock-up
during the - Inspection on spacecraft or
operation process system
D Demonstration
of the satellite - Demonstration on simulation
model (EM, QM, bench
etc.) or (dynamic demo)
demonstrationona - Flight test simulator
satellite or payload
mock-up or
verification through
simulation
Validate results
- Laboratory test reports
with testing at the
- Bench test reports
T Test part level, prototype

or development

model level.

- ETB test reports

- Ground test reports

EM, engineering model; QM, qualification model; ETB, electrical test bed.

sle] BAZ Tt A

9ol LED(light emitting diode)E FELE 3t AT HAAS 44 - /s = 243

] = o

Bof Agshe Zolth. Aol Oabad e Bl

A, 24 23 LED 39 ¥717F AdisEo R 105+ oot ul Aol HeEge=
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2 Jlssiths A2 mgEigd o]t Ulko] YR QAR o] HtejE]ojo} St} Table 2
= WA AT U= AR dF 87ARS] ofjojt
WA gt Hiel o] A|A”IESE 7|& BEA|A0] RS ARRAE 25| Al
& 95k BAA, 249 ABAIAY 52 f71H0R B3 welskar, ARk Al
Ah 1, A Qe I B e E-8ote] 87ARe] Bitoles 8 AAE 435t
I Top Down Hr oz R-AZ-30lst Al ol £330l TEkA FEolct wehA
Table 20 H2H UF 2FARFS A2 Phase A B7]%H Phase B Alo|ofA] =8 x|ofof
AAE B 7l ZEAAE oFF] FERl AARS] QAR Tkdlshe AHjo|tt
Table 2014 MR-01-2 $1/49] 71 SAlof| AAA o2 e 7 |ojA| FofAl= A7
[FARYE] oo, MR-02+= A7+E9] dF 7Ig8A19] 2= =55 dF a7ARIoth
MR-019] 47 QARG 2 RE off] 7)o AAR] @AYol o 4= QIA9E, Table 3
off AAIE At Zol 7P A ARRE HAA|S] AL 750 RS 9 AlAEE
FAJElL 0]2 &3 S 9l Q ARFS T&31= Qo|t), AR 9% QAR MR-012E
B A 27] AlAFO] HAE A5 21“ SYS-SS-072 Z-& A AH 8 FARNE A
AlA"o] gk o= Qlok. 18] o|FA] TP AAH QFARRE AAH] QAR HED]

Table 2. Example of a cube satellite mission requirement

Level 1 Mission requirements

D Title Requirements

Intrinsic
Cube satellite must be designed and built to meet the
MR-01 mission
requirements of the launch vehicle.
requirements

Cube satellite's in—house LED payload must be capable of
Mission
maintaining an absolute brightness rating of 10 or less
MR-02 operating
when the LEDs are operational for the duration of the
requirements
mission.

LED, light emitting diode.

Table 3. Example of a cube satellite system requirement

Level 2 System requirements — space segment
Parents Verification
ID Title Requirements T —
ID A 1 T D

CubeSat must use only
SYS-SS-07 ITAR free MR-01 0
ITAR free components.

The LED (power) output of
LED module
SYS-SS-65 the CubeSat should be at MR-02 (0]

output power
least 20 W.

ITAR, international traffic in arms tegulations; LED, light emitting diode.
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9(SRR)IL} A4l A HES||(SDRYE &0l 87AYY] ¥ {15 AESHA =W, Table
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9] A B)= vIRst Fd YIRY HH =5 G AlolE sl FAA Pl AgHo=
FEFS E S Q7] QEolth A, 74 Agelwt 3y Z|of AA”] QAR &
&3 A8 AuEA 4 MR-029] A 87 24 AsFe] = A8 A4t =
Aake] Aol wheh gebd 4= loug A A5 13 Ale]9] YZHelevation angle)ll
wetba] GefRl= A7t AA o] FE5] vrg=lojof gt

Fig. 2= AV ¥5387 9149 Afel9] 2ol wet Derl= f1d-254 19 ARE EAR
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900 km oWl 27Tt AF-E FPHeE AU HAE sHthd, o124 siaS Bl &
Z+9] wstof wet AAF TEHNA AXEE LED F¥9] 87|7F Adisd 71% 1063 °lske
FABE] Sleliad= 4 20 W Hgo] QPgH 0= FHE ofof shi= A SRIt 4= SIrkFig.
3). o] 314 ATE vigoz AR AR} MR-020 #&55= A~ QFARY SYS-SS-55
£ T 5 0 B2 B2 AlAH 87 AR AES|E Bl MAshoF gtk

FA 7]&St Hiel 2ol MR-029} SYS-SS-55+ AlAH] 7153 TE0] Q= AR
o} mEba] AAE A AES] O] B3] MR-029F SYS-SS-559] 84+ 27A AAJSkL Q)
£ 715 T8 oRE HIstolof gt B4 a7ARYel AXE Tls T oRE wdolr]
Qlol A== AT TS oA 7% viet Zo] Alf(tesyolth. A AlES B 8¢
ARl A ANELL Sl 7159 T o RS HFOE oAFaAo] o]fojd AL, M =
7] @A(~Phase A) 9= 7RLsto], Fig. 40 AJAIE vkt Zo] LED SAAIS] BME AlZts}o]
71 AFAAE AT = AUt

Fig. 5= Fig. 49 AIAE LED 9AA BMO] AA 5 Al AXZIO R S4E HES kA
St Axtolct, I =AIE PWM(pulse width modulation)& Z-&5t0] LED Egto]H
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Fig. 2. Calculated distance between ground observation point and satellite as a function of

elevation change.
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Fig. 3. Calculated power required to meet system requirements with elevation angle.
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Fig. 4. Example of configuration of an LED payload BM. LED, light emitting diode: BM,

breadboard model.
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Fig. 5. Measurement of the supply power of the LED payload. LED, light emitting diode.
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Table 4. Summarize development phase review meetings and production documents

Design
Phase Purpose and related documentation
review
(SX) A QTAE FO, AAR HE 28, Ml
A% ok
System )
| NAR QTAE Holk
requirement B B
QTN T It B Y M2 ot
review
; - YT QAR Y O
re-
- 7ISH/H7ISE QPAE £R
Phase
A (FH) AAE” 7 dA &=, 45 22 44
System AAR 2 MEAAR Y 3 75 FY
design AAE S MEAAR F2AM
Phase )
A review - A& QAR gt R
- MNAR 749 MEAIAR XME 0{F
Mission requirements New
Mission operation concept New
Technical
System architecture definition New
document _
System requirements New
Budget analysis New
(FH) OHIEA =, SMEA 2, 25 22 474 2 HA,
Preliminary Al ¥ =4X{2| OHIEA &=
design OilH|EAIM
review - AIAEITZA Big ofR
- ADEQ0] 3 SIEO E/AIARE QIETHO|A O
Project organization plan Updated
Phase Mission requirements Finalized
B Mission operation concept Updated
System architecture definition Updated
Technical
System requirements Finalized
document . o
Spacecraft technical specification New
Ground segment technical specification New
Budget analysis Updated
AlIT plan New
(BX) AAL AHEA 22 S
Critical
Phase . SHEAM
design
C - OfH|EA ZE Z1F 2t of%
review _
- ATEQ0| ¥ SH=gof 72 $MsYZt Tl 7t ASEA S
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Table 4. (Continued)

Design
Phase _ Purpose and related documentation
review
Project organization plan Finalized
Mission operation concept Updated
System architecture definition Finalized
. Spacecraft technical specification Finalized
Phase Technical _ o o
Ground segment technical specification Finalized
C document . o
Budget analysis Finalized
AIT plan and procedures Finalized
Verification control New
Mission operation procedures New
(FH) MEAAR-HIH ST HAE Y 223 2=
MNARD S & AR BN
AAR Se H SHEAR” Z0M
Test
- MEAAHE 77 B 0l
Readiness
- NEAAE 27 7)5/45 DI Sl Wi
review
- MEAIAHE 7t HE AS =01 2
- SR AAE VIS H 45 O S0l /o B4 01 s Sl Ui
Phase - ZA B RFEEAY T|E
D) Test paln New/finalized
. Test reports New/finalized
Technical
Verification control Finalized
document o . o
Mission operation concept Finalized
Mission operation procedures Finalized
Pre-  (SX) 23 % 201 NE ZI BI, 53 2% XF, YT 2%
shipment 29, A2Y Ext =0l
review - H=d AR AR E ERL AR M 2 RS AR E ERHE

AT, assembly, integration and test.

27 a7 Atiael Aol AN, 207t BuHo Skt FRAHY A
W A28 Falue] Aol AXSIL Qs AIE Wt IS %—oﬂ Slde A
SHL AHE 4olok Tk SHAIT 5 - Y SIAe) ket A Skt e wihoz
TEE A 2H %@L@ A FEIA A Z2Ie] A8plols Rzt ek webd
B =Rol A NASA 9571 T2 TIgio] A8 AAT Foby S vgos Fus)
o] A %741011 %01 7k A A2 Bote] GBI 715 71&skn. ool AANY
of olshA ke AATOIA FESAS] 2 A Aol AgEE ALgIt] ST
7152 AX|BReT] A £80] B Zojet wrelch

https://www.jstna.org | 353



FEQIO| AAL T3t

ALl =2

o] =2 20239%= FRERP SRS Ader RS

2]3g71d2] A19No.

7]
RS-2023-00271403, 248 949 28 AL 3t A4} SW Z=HE 7|&71dh} 2023

£ AREISAREAR] Agon R A9e o

FagE Ardyc

(NRF-2022M1A3C2014567).

References

1. NASA, Systems Engineering Handbook, NASA Langley Research Center Technical Report,
NASA SP-2016-6105 (2016).

2. Defense Acquisition Program Administration, Systems Engineering Technical Review

Guidebook (Defense Acquisition Program Administration , Gyeonggi-do, 2017).

Author Information

+ 2=

freewill@kari.re.kr

N

ot AAREAEselN At
= FSIIAL, 200195E THFTEFA
oA ofelely @ Helek 9ol A4
= B A A7 Susigon], B
KARI oejlol] 2Aqgdrie <ust

o 9] A Wol Bl ATRTE Sayskar ek

o

()

0] ¥ 7 leemg0214@chosun.kr

FAddietal 7|AN AEEeollA 20229 A
AF SIS HSshL, @A 5 digtaolA Bt
ARl Ajsk Folck. Al43] FEY AA
th3lol Fofsto] KMSL FELS] A 9
A FAE wsIen, dAle AHod]
B Addislel] AA=o] 7iEFR] CPSat
of Al QIAUoiR 5 FEL/el it thet A Eof o
Sl itk

354 | nhttps://doi.org/10.52912/jsta.3.4.342

HF M & isaac@chosun.ac.kr
20074l 513 Drexel that 71412 slzolA] 1t
v ARFIE FHESET 2010W7HA] ul= ZHE
-~ ~

y Z71&Y(National Institute of Standards and

— Technology, NIST)olA] BRARE drgloz
‘H. SALFAAE AT T 28 3 9
o HeiTel oItk olF 20137 T
PEOFATY HAATAOR AT F, A ATk 717
Taflol ] 919 RIS SHIQHIA AT, 9FAY T}

AA|, 24P AA/ARE AT 5 S8 Alag] TH"



J. Space Technol. Appl. 3(4), 355-372 (2023)
https://doi.org/10.52912/jsta.2023.3.4.355

xSt 88
Journal of Space Technology and Applications
pISSN 2765-7469  elSSN 2799-3213

Check for
updates

Received: October 12, 2023
Revised: October 24, 2023
Accepted: October 30, 2023

*Corresponding author :

Seul-Hyun Park
Tel : +82-42-230-7174
E-mail : isaac@chosun.ac.kr

Copyright © 2023 The Korean Space Science
Society. This is an Open Access article
distributed under the terms of the Creative
Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0)

which permits unrestricted non-commercial use,

distribution, and reproduction in any medium,
provided the original work is properly cited.

ORCID

In-Hoi Koo
https://orcid.org/0009-0008-1769-0833
Myung-Kyu Lee
https://orcid.org/0000-0003-1207-3955
Seul-Hyun Park
https://orcid.org/0000-0001-8852-0016

2LH| FHOA S8 AHE AHE ST i

TS|, 0|Y?, Hhadslt

15128IR O X019 KARI OFF}HD)
RMOISHD Ca 7|4 st
SEMTaD 7|42t

Lessons and Countermeasures Learned from Both Domestic
and Foreign CubeSat Missions
In-Hoi Koo', Myung-Kyu Lee?, Seul-Hyun Park®®

'Korea Aerospace Research Institute, KARI Academy, Daejeon 34133, Korea
"Department of Mechanical Engineering, Graduate School of Chosun University, Gwangju
61452, Korea

SDepartment of Mechanical Engineering, Chosun University, Gwangju 61452, Korea

O OF
a5
7 RO AUM ZHIL 2R WP E w AHO|A ACHO 0|28 'R2 £AH HIS OH| =2 &5
= 71 HESIE0] AtHA HEut ZeiEiA 27 Moz JIkok QU T2t & =0z

=U & olelo] FEHY LA 2EARE Sl Hoill EAHES dTHET AFHRI 2FHA 289l &
gt MEISS 2Eoks YO0l CHolM MABIRILE. 53| 12| AlE IEUMTE Y7 AlLt2|2 o
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Abstract

As the need for low-cost, high—efficiency cubesats develops in the new space age, commercial paradigms
are shifting in the private sector. This paper examines the challenges of launching and operating both
domestic and foreign cubesats, and proposes practical solutions to ensure the robustness and reliability of
the satellites from a practical perspective. In particular, the paper deals with checkpoints that are easy to
miss, focusing on key events that can occur from the satellite deployment process through normal mode
to mission mode in the operation scenario. Although the contents presented in this paper may not be
technically applicable to all cubesat systems due to the different nature of each satellite bus system, they

will be of some help during satellite assembly, integration and testing.

o] : Fu9, 94 29, BE

Keywords : cube satellite, satellite operations, lessons learned
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Fig. 1. CubeSat development entity and mission achievement success rate [7].

< AR 23R, B sk SA0IM ARIAl SR e T H 28 FAVE &AL
A G AJEEC] 70% SHHE AR e AL R 5 T
o] FELg A 3 29 AHet FABH =l FES 73

AR P SRS FAHSIE AAEA el A - Al - S - AT 71s0] FIEL
M= FAlolth. 53], BAdSlE Sl wiEd A= A FEAG = A= 71, 71E
A e MEES AYT 5 Q= 71 7F S7IsHAEA, s SHC= Ak FHAC
A= 28 A= 27] AAdiglel vls) FP=IL At Table 100 F2|=of 9= AAH, 5
3] ZAdSE Sl A= o] Zhdo] WAk 471 FELYY AS A BE oRE gl
T e v Ao B AL, 371 "ol R SAlol et 948 B Vs
gEHer ASoIAH. ok A= 1719 FEAE(Randev)e oFH = BES] 3o
o vl AeE JdHer & Folth

2
=
ol
i
of
:0:"',
=
ﬁ
i

2.1 =zl FELIE JIg =3 MR

FEA o Ao iFE2 94 AE olF 29 27] ALFY eFkEolud 1%
(Infant mortality)? & 9= A& LA 310, Fig. 2014 AAISIAL = At do] 5
g AREE ol AlLd PP} AJHR AdshEA o AulEe F43] WolAlal 91449 o
1 Aol 7PHIAIHEA - duiE2 oA 4SS d-

A = BANSE B3l A% - T FEAE S LF AT HolEE A A
€ Aefstale HiF2o] AlLRe] ARso|u dgef dgtle AC® HEkE: mEbA,
Al&do] RPPSFEo] I Auffgo] FASH WolAle AlFdl AP o A=E FEA
i SARlA AlAE Al SR vt nhdo] Wasity FELGT o] of2] AHAIAH
o] SLE0] 7Isol FAEE AlagelA A S A qHeRE MEAILE
HW/SW 71.59] ol&8Kredundancy)?t 715 49 &% HAE W $:3)0] tigkes A
AJEAL At

https://www.jstna.org | 357



A2 HHE FESE K

I d 28 wE
Table 1. Status of domestic cube satellite launch and operation
Development
Satellite name Size Satellite operational results
organization
- Beacon signal reception
Link 2U KAIST - Two—way communication successful
- Received some mission data
Korea Aerospace
KAUSAT-5 3U No signal
Univ.
CANYVAL-X  2U+1U Yonsei Univ. No signal
KHUSAT-3 3U Kyung Hee Univ. - Beacon signal reception
Chungnam
CNUSAIL-1 3U No signal
National Univ.
STEP Cube
1 Chosun Univ. - Beacon signal reception
Lab.
Seoul National - Beacon signal reception
SNUSAT-2 3U
Univ. - Received some mission data
Seoul National
SNUGLITE 2U - Beacon signal reception
Univ.
Korea Aerospace
VisionCube 2U No signal
Univ.
- Beacon signal reception
KMSL 3u Chosun Univ. - Two—way communication successful
- Received some mission data
CubeSat
2U+1U Yonsei Univ. No signal
Yonsei
STEP Cube
oU Chosun Univ.
Lab Il

- Beacon signal reception
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Table 1. (Continued)

_ _ Development _ _
Satellite name Size o Satellite operational results
organization

- Beacon signal reception

Randev 3U KAIST
- Two—way communication successful
Seoul National - Beacon signal reception
SNUGLITE I 3U
Univ. - Two—way communication successful
- Beacon signal reception
MIMAN 3U Yonsei Univ.

- Two—way communication successful

—bathtub curve
intersection infant mortality & randam failure
intersection random failure & wear-out 2

failure rate

time

Fig. 2. Cube satellite mission failure rate during orbital operation [8].

U HEAIRE 02 P4 S TR olFeiel 59 HIAE e TPt
JE AEE FIA2EL 1 oF %) AlETold 23S AW EH(Fg. 3), AA S
Q149] o]F 4ol oF 1HE 71 1] o]=31E &5l S E A|AHIO] AlFAo] 2F 73%
of vls} S HAES] vz Qs gH AFgo] oF 6% A= =t AS AT &
Ak A AT S 19 odew ‘fvfﬂ“ﬂ ol53le} T HIAES HHESiE= AlAE
A9 Q] A=A WolAAE, AR = 199 Zaet vV = JIE 2252 o]F5}
H5] 59 HIAES] HRo g QI 4l é T 27 H f=poi.

Fig. 401 AIAIE ]ﬂ/‘é Ao Vﬂ A= e SAHstollA ARt HORYU-IV $14430
x 30 x 30 cm, FA= 10 kgO & 6UF FEAAT} 5-AD2] EM(engineering model) 5%
BIAE oA dofzl %‘%J 7%45 Fig. 33} fARSICE BIAE 2] AJ7to] <F 680 A1t
EEEIEA oY &F STt T ol S7ISHA AL, o] AlFRE = Fig 3914 AlA
S Biel o] A|ARIS] eAFo|u a9 THA Al Z2Atsto] A Aufigo] W AJHl=
FAE 7hsAdel S7IRIth mEbA, FELY FASE S5l A= el disiA = A
HAAEQ] o]Fs} 22 QI3 o] = e Fe RFEAE AFde gHd 4 9l
© WS S HIAE IAof Hitt AE7F s,

oh

I

=

https://www.jstna.org | 359



A2 HHE FEAGY HE X 2E W

Hol

360

https://doi.org/10.52912/jsta.3.4.355

09r
0851
Q
0
]
Q
o 0.8
£
@
2
o
2075
2
a
E
5 07
% ¢ 1year
3 5 ® 3years
§0.65 = Gyears
o i * 10 years
=  [S— equalily
g 0.6 i
8
T i 3
0.55 L
0.5 "" L 1 L i

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 08
reliability with red. S/S for reference case

Fig. 3. Comparison of reliability improved through subsystem redundancy and integrated test

repetition operation [8].

Engineering model 2 (EM2)
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Fig. 4. Integrated test time and number of failures/errors for HORYU-IV satellite EM [6]. EM,

engineering model.
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Fig. 5. Interface between kill switch and EPS [9]. EPS, electrical power subsystem.
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Table 2. Status of domestic cube satellite launch and operation [13]
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Fig. 11. SEU incidence in SAA region [14]. SEU, single event upser; SAA, South Atlantic

anomaly.
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Fig. 12. Watchdog timer run time [15].




J. Space Technol. Appl. 3(4), 3565-372 (2023)

90%

81%
80% -
1%
70%
L
‘é 60% 53%
s 50% °
E 50% + 3% 45%
€ 40% 1 = Launched (n=56)
5 To be Launched (n=36)
g' 30%
20% + 9
1% 14%
10% +—i —5%— % % o A% % % %
0% . = 0%3 0% = 0% 0%
o . : r . : .
© N @ Q9 2 A R &
¢ & P PSS
5 & & 4
o b

Fig. 13. Data bus interface frequently used in cube satellite [16].
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Fig. 14. Comparison of reliability of cube satellite serial communication method [16].
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2L} 20| SFTEA NLAIPRRE ARE 2 AL HUAIEE CHr2| E A ME0 Of2t YRS
XS Gdol7| fIet HAHRL OIS 2Fo| ot HRFAIGAIAE 7| JHUEIUCE TH=2|0| B RHE
=L 70| 7HLrst 4719] MSIERMZH 2155t BAF SIH0|EE 20249 122E Ut B0 S
70 OiFFO|Ct OIS {IStH 22t £Z=O| SFEAL WSIHI0|E &2 2 SIHAAEIRI KPDS(KARI
Planetary Data System)7t ZHYEICE 2 =R0iAl= 752 KPDS EA0IES| Fg1t 71501 CHoto

7| =3I
Abstract

Initiated as Korea's inaugural space exploration endeavor, the lunar exploration development project has
resulted not only the Danuri lunar orbiter but also payloads designed to achieve mission objectives and the
associated Korea Pathfinder Lunar Orbiter (KPLO) Deep-space Ground System for the operation and
control of the Danuri. Scientific data gathered by four scientific payloads, developed by domestic institutions
and installed on board the Danuri, will be publicly available starting January 2024. To facilitate this, the first—
ever Korean space exploration scientific data management and public release system, KARI Planetary Data
System (KPDS), has been developed. This paper provides details on the configuration and functions of the
established KPDS website.

Bao] : 9FRAL TR, Lk

Keywords : space exploration, scientific data, public release

1. M2

[ S

U F29] 5 FAIE 20169 149 7AYol A= o] 2022 8¢Y SURKTA]
7h) ml= E2Euto] Aol Asdo| Q= AUY SFAE A AR AA & 1=
100 km 339 = #HlzolA dFE kL e 2 A=A thrglolth. trde 7T
Alo]l Korea Pathfinder Lunar Orbiter(KPLO)Z HHE%oH, o]F =1l g% JLLE §o
of ‘el 2h= olgol AEE I
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hrelt 9 190 9RE ST Aolglont Wl duw L BA 2E 3
ol ek 2025071 249] Y AYSIel F 3] PR S Aol o
P 4T 29 /17 B B} U 5719] FSPule] s F B DL 7 A 9F

730l gt BBEAL YTE ST o5 IS S G HH FES EHL AP
-?4 F 2k 237191 KGRS(KPLO Gamma Ray Spectrometer, SFHAZALATY), & &
(o]

T3 A7V S5 A A7 185787190 KMAG(KPLO Magnetometer, 73
, G HHO T FARS EESH] st 7HHEel LUTI(Lunar Terrain Imager,
a2 At sFAloF TRl PolCam(Wide-field Polarimetric Camera, $t
FHAZTATDE FHY FREA A8 tigo] NS FEg wU ZRiEAAelH,
29 JF29AHQl PSR(Permanently Shadowed Region)2 23517 3t ShadowCam
2 ZAEY FAAZA 1= NASA(National Aeronautics and Space Administration)2] |
¥O=F Arizona State UniversityZ} 7ottt 4719 =] IstEAfAl= 2uet =9
SFEA BERIFE cke HAAIEA oheE|e] Hellirt 2R 0 AIRFE AR S
2HE 1 T2l 20249 1€7E Aut disolA Agt glo] 371d aFgelet. olet S5
AP Tt Y = RO XA TS v 2 x719] oflito] QfsiA =3 A7NTAIY o]
o, 75ke] Feldolehe SRl HetAtR Y] I/ A & & Qlok &, Aw AT
ARS8 ofyEt i S-SR oF E8ste] HeH, 84 GHE A= AL
At ZERIF9] 7HE 83t B F sfol7] wjZolth
oj2Rt & HARE H|ESto] thee] 0|99 SFHA HRRIFERE F5E= HeAtRY
A A Gt F7M= ARAE HlolE Z8o] Golstes 15 AlAFle] RSt o] gt
FFTSFY2 vF FFFHNASAY Planetary Data System(PDS)H 9 534
(BEuropean Space Agency, ESA)S] Planetary Science Archive(PSAYE HIX|uldsto] KARI
Planetary Data System(KPDS)E 7HstloH, 20249 195€ AElg Folo] Uit iz
oflA F7ME]e] HiE AARRTE ofe} vt FA =l AeFAAZE I3 BRtRE
W S 5 JEF T Aol

1.1 KPLO(Korea Pathfinder Lunar Orbiter) &FX|&A|ARI(KPLO Deep-
Space Ground System, KDGS)

g A=A o] A 2 232 ST AT i 2o YIS KPLO A%
FAAIAEIKPLO Deep-space Ground System, KDGS)O|A 4=38=]11 i}t KDGSE 4l
QF A AR |WHKorea Deep Space Antenna, KDSA), AAZREGEA|A|(Real-time
Operating Subsystem, ROS), Y5-A1&FA|A|(Mission Planning Subsystem, MPS), B3 st
BEAA(Flight Dynamics Subsystem, FDS), FA 2 &5 A|A(Image Calibration and
Analysis Subsystem, ICAS), TR HE|H A A|(Science Data Management Subsystem,
SDMS)} o|F A ¥otk= AHER 4= 0] UtkFig. 1). thee|e] HsHAAI7E G5 2
ST A= 4, A%, vz, 371 59 = ASFAIA A" W] EAA(subsystem)
% shuel FekRla e AHEAIAEB(SDMS)S: E3to] o]FojA| 1 it}
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1.2 SIXE 22| MEA|AE(Science Data Management Subsystem, SDMS)

et e] AEAIARI(SDMS)E thHre] ] Sui7d HergAArt g53t & 2AF Z4st
tlojel7} EEHER] FER AeFA o] FAIGH HH, ol Az 9 EA5k] oA
7+ ISIRAA 7|1 HolAl AlgoHAl et olegt QR He] Algat A%, TEe] dTgS
F¥sh= KDGS2| FAA7F SDMSOIH.

SDMS= KDGS9 =4 oA Q== AeAtad2|E(SDMM, science data
management module)@} 25 U4 LP== KPDSE /3=]0] Qltt. wehA] o+
o] FEHEAA 77 D ED] FEj] ZeldoleE e Wi, A2 HadoleE
Uut gi=of|l A ZAH ] YA KPDSol sFTPE H<&sfof gkt 12yt Aejd msh|o]
EE it giFo] Yy 8] Ysires HIMLS 33 9HEkAE o-8sto] KPDS FARIE
of &t HEo ZIQlolut Q15AAL glo] vt HstHlolHE A E iy ¥ 4= gl
o} ZpAISE KPDSS] 7153t ARgell thiafiAle 2.2894] ThE3ict.

2. QFEI} AR BIH
2.1 312l SFEA TAX FHAAH AL

A5 ol2je] HAC] choIA SFHA USRS S Aol Y FAHES Helole]
£ B 91 ALEe TESHT ik @A ARAH TSR] oS 7 fEH

Al2|lo 24 uls NASAS] PDSeF -#-3 ESAS] PSAE A= & 4= Stk

2.1.1 NASA(National Aeronautics and Space Administration) PDS(Planetary Data

System)

FEHIFL HoJEl9] Ao we} nodeRE F-Este] v Y tigl 2 H[gE] AF7]Ho]
Y= Gkl Stk ESF PDSY| 71&4Rl At A ¥s "@Yohks A jet propulsion
laboratory”7} 4~385}aL QJtt.

PDS= 954 Zateo]E o] F7)8at ofue} fshH|o]E| o] ARgAREo] &-8517] -golst
L5 S5EAL AelHlolE o] #ES MEshe ATE 35k, olEet #E JA] PDSE
1 BT dA 49 HHolgks ofu24 PDS4etal BHth PDS4E FAEEFol 9
SiA AAH HEE2 ofYAT A S5RAL HRRIRE ek SVEGE V=Y §E
A U= 7 olE HECE AHslo] LA Held|olelE wEstal Qlrk PDS4
9] 7} & EA % sl PDS4 Data Dictionary®} o] #-835F XML 3419 metadatazh
I £ ok olof digt AAISE AR PDS &30l (https://pds.nasa.gov/datastan
dards/about/)elA &1 4= Ut

2.1.2 ESA(European Space Agency) PSA(Planetary Science Archive)
ESA7} Zoldt 95t Ze o Z5d Hslhole= PSA ¥ A]E(https://
archives.esac.esa.int/psa/) g &4 F7H H22E B 4= QIS 51l it} 53] PSA
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U R 7] (thumbnail) 18- 958 AMEALE B3 A 22 AR HolE

a1z o H4) 9@ AAAT UL KPDSE 7jdktol] QlojAl MAjmisioic

2.2 gt=

09

S2F A2 KPDS(KARI Planetary Data System)
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B Z7HAIA"0] 5] {THE].

KPDS?] ¥yl =S 913t #ekxtaE Z/l= KPDS YAl E(Fig. 2)E Edjj4] o]F0]d A
glolw, LAHR] I IR FHAIA ot 202449 192 Agstar qirk 20239 11
4 @ U] SFRAME g AA o7 fYsh] di2ol KPDSE &5t
20249 1978 S detHolH: thee|e] s TRIEAA 47171 E53 Zett|o]
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PDSE &5te] 37hE ofIolch

KPSt feromses fowss s WU e k905 Saaren v Mo

KPDS'
KARI Planetary Data System
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Contact us

Fig. 2. The main page of KPDS website. KPDS, KARI Planetary Data System.
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Fig. 3. KPDS directory search. KPDS, KARI Planetary Data System.
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Filter © Category ©
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Processing level Instrument

Raw » luti (13)

Observation time

Processing level

Observation start time

. » Raw (13)

Non-standard List > Observation time

Directory List > » 2023-07 (13)

Fig. 4. KPDS search filter. KPDS, KARI Planetary Data System.
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Fig. 5. Example of KPDS search result. KPDS, KARI Planetary Data System.
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Fig. 6. KPDS thumbnail viewer. KPDS, KARI Planetary Data System.
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Metadata view

XML viewer Tree viewer

INFORMATION
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Fig. 7. KPDS metadata viewer. KPDS, KARI Planetary Data System.
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