Table 2. Phase I algorithm

Phase I algorithm: Evolutionary computation
Step 1: Initialize population → Θ ˜ j , 0 9 ,    j ( p a r e n t   i n i d i c a t o r ) = 1 , , 50 ,
Step 2: Evaluate population → E v a l j ( f # ( T F ,   Θ , Θ ˜ j , 0 ,   Φ ) ) ,    # { 1 ,   2 ,   3 ,   4 }  
Step 3: Evolve generation (generation limit: g ≤ 10)
  For each generation ( Θ ˜ j , g )
- Select parents
- Produce offspring P c r o s s o v e r = 0.3 ,   P m u t a t i o n = 0.6 ,    n u m b e r   o f   o f f s p r i n g   =   300 )
- Evaluate parents and offspring
- Select the next generation
Step 4: Find the best solution for the optimal region → Θ ˜ p 1 , 10
Step 5: Implement Phase II Algorithm for the optical solution, as an initial value of Θ ˜ p 1 , 10